54 research outputs found

    Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo.

    Get PDF
    BackgroundProstate stem/progenitor cells function in glandular development and maintenance. They may be targets for tumor initiation, so characterization of these cells may have therapeutic implications. Cells from dissociated tissues that form spheres in vitro often represent stem/progenitor cells. A subset of human prostate cells that form prostaspheres were evaluated for self-renewal and tissue regeneration capability in the present study.MethodsProstaspheres were generated from 59 prostatectomy specimens. Lineage marker expression and TMPRSS-ERG status was determined via immunohistochemistry and fluorescence in situ hybridization (FISH). Subpopulations of prostate epithelial cells were isolated by cell sorting and interrogated for sphere-forming activity. Tissue regeneration potential was assessed by combining sphere-forming cells with rat urogenital sinus mesenchyme (rUGSM) subcutaneously in immunocompromised mice.ResultsProstate tissue specimens were heterogeneous, containing both benign and malignant (Gleason 3-5) glands. TMPRSS-ERG fusion was found in approximately 70% of cancers examined. Prostaspheres developed from single cells at a variable rate (0.5-4%) and could be serially passaged. A basal phenotype (CD44+CD49f+CK5+p63+CK8-AR-PSA-) was observed among sphere-forming cells. Subpopulations of prostate cells expressing tumor-associated calcium signal transducer 2 (Trop2), CD44, and CD49f preferentially formed spheres. In vivo implantation of sphere-forming cells and rUGSM regenerated tubular structures containing discreet basal and luminal layers. The TMPRSS-ERG fusion was absent in prostaspheres derived from fusion-positive tumor tissue, suggesting a survival/growth advantage of benign prostate epithelial cells.ConclusionHuman prostate sphere-forming cells self-renew, have tissue regeneration capability, and represent a subpopulation of basal cells

    The Movember Global Action Plan 1 (GAP1) : Unique Prostate Cancer Tissue Microarray Resource

    Get PDF
    BACKGROUND: The need to better understand the molecular underpinnings of the heterogeneous outcomes of patients with prostate cancer is a pressing global problem and a key research priority for Movember. To address this, the Movember Global Action Plan 1 Unique tissue microarray (GAP1-UTMA) project constructed a set of unique and richly annotated tissue microarrays (TMA) from prostate cancer samples obtained from multiple institutions across several global locations. METHODS: Three separate TMA sets were built that differ by purpose and disease state. RESULTS: The intended use of TMA1 (Primary Matched LN) is to validate biomarkers that help determine which clinically localized prostate cancers with associated lymph node metastasis have a high risk of progression to lethal castration-resistant metastatic disease, and to compare molecular properties of high-risk index lesions within the prostate to regional lymph node metastases resected at the time of prostatectomy. TMA2 (Pre vs. Post ADT) was designed to address questions regarding risk of castration-resistant prostate cancer (CRPC) and response to suppression of the androgen receptor/androgen axis, and characterization of the castration-resistant phenotype. TMA3 (CRPC Met Heterogeneity)'s intended use is to assess the heterogeneity of molecular markers across different anatomic sites in lethal prostate cancer metastases. CONCLUSIONS: The GAP1-UTMA project has succeeded in combining a large set of tissue specimens from 501 patients with prostate cancer with rich clinical annotation. IMPACT: This resource is now available to the prostate cancer community as a tool for biomarker validation to address important unanswered clinical questions around disease progression and response to treatment.publishedVersionPeer reviewe

    Targeting the RANKL Pathway: Putting the Brakes on Prostate Cancer Progression in Bone

    No full text

    YAP1 and AR interactions contribute to the switch from androgen-dependent to castration-resistant growth in prostate cancer.

    No full text
    The transcriptional co-activator Yes-associated protein 1 (YAP1), a key nuclear effector of the Hippo pathway, is a potent oncogene, and yet, the interaction between YAP1 and androgen receptor (AR) remains unexplored. Here we identify YAP1 as a physiological binding partner and positive regulator of AR in prostate cancer. YAP1 and AR co-localize and interact with each other predominantly within cell nuclei by an androgen-dependent mechanism in a hormone naive and an androgen-independent mechanism in castration-resistant prostate cancer cells. The growth suppressor MST1 kinase modulates androgen-dependent and -independent nuclear YAP1-AR interactions through directly regulating YAP1 nuclear accumulation. Disruption of YAP1 signalling by genetic (RNAi) and pharmacological (Verteporfin) approaches suppresses AR-dependent gene expression and prostate cancer cell growth. These findings indicate that the YAP1-AR axis may have a critical role in prostate cancer progression and serves as a viable drug target
    • …
    corecore